Predicting Crime in Middle-Size Cities. A Machine Learning Model in Bucaramanga, Colombia
Main Article Content
Abstract
The use of technology to prevent and respond to citizen security challenges is increasingly frequent. However, empirical evidence has been concentrated in major cities with large amounts of data and local authorities' strong capacities. Therefore, this investigation aims to capture a series of policy recommendations based on a machine learning crime prediction model in an intermediate city in Colombia, Bucaramanga (department of Santander). The model used signal processing for graphs and an adaptation of the TF-IDF text vectorization model to the space-time case, for each of the cities’ neighborhoods. The results show that the best crime prediction outcomes were obtained when using the models with spatial relationships of graphs by weeks. Evidence of the difficulty in predictions based on the periodicity of the model is found. The best possible prediction (with available data) is weekly prediction. In addition, the best model found was a KNN classification model, reaching 59 % of recall and more than 60 % of accuracy. We concluded that crime prediction models are a helpful tool for constructing prevention strategies in major cities; however, there are limitations to its application in intermediate cities and rural areas in Colombia, which have little statistical information and few technical capabilities.
Downloads
Article Details
Urvio, Revista Latinoamericana de Estudios de Seguridad, operates under Creative Commons Attribution-No Derivative Work 3.0 unported (CC BY-ND 3.0).
The authors who publish in Urvio accept these terms:
You are free to share / copy and redistribute the material in any medium or format for any purpose, including commercial. Therefore, authors retain the copyright and cede to the journal the right of the first publication (CC by-ND 3.0), which allows third parties the redistribution, commercial or noncommercial, of what is published as long as the article circulates without changes.
The following conditions exist for the authors:
Recognition - you must recognize the authorship, provide a link to the license and indicate whether changes have been made. You can do this in any way reasonable, but not in a way that suggest that has the support of the licensor or receives it by the use he makes.
Without Derivative Work – If you remixed, transform or create a work from the original material, you cannot broadcast the modified material.
For more details, visit the page of Creative Commons (CC).
References
Abt, Thomas, Chris Blattman, Beatriz Magaloni y Santiago Tobón. 2019. “¿Qué funciona para prevenir y reducir la violencia juvenil? Revisión sistemática de la evidencia sobre prevención y reducción de la violencia juvenil, con un análisis aplicado al contexto mexicano”. USAID.
Alcaldía Mayor de Bogotá. 2019. “Bogotá desarrollará un método de predicción de delitos”, https://bit.ly/3JrFqnr
Alvarado, Nathalie, Ervyn Norza, Santiago Pérez-Vincent, Santiago Tobón y Martín Vanegas-Arias. 2020. “Evolución de la seguridad ciudadana en Colombia en tiempos del COVID-19”. Nota de Política CIEF 1. doi.org/10.18235/0002780
Barrera, Francisco, Carlos Díaz, Álvaro Riascos y Mónica Ribero. 2016. “A comparison of different crime prediction models for Bogotá”. Documentos CEDE 34.
Blair, Rob, y Michael Weintraub. 2020. “El Ejército y la seguridad ciudadana: un experimento de campo en Cali, Colombia”, https://bit.ly/3SnxCHz
Blattman, Christopher, Donald Green, Daniel Ortega y Santiago Tobon. 2017. “Pushing Crime Around the Corner? Estimating Experimental Impacts of Large-Scale Security Interventions”, doi.org/10.2139/ssrn.3050823
Braga, Anthony A., Andrew V. Papachristos y David M. Hureau. 2014. “The effects of hot spots policing on crime: An updated systematic review and meta-analysis”. Justice quarterly 31 (4): 633-663. doi.org/10.1080/07418825.2012.673632
Brantingham, Patricia, Paul Brantingham y Wendy Taylor. 2005. “Situational crime prevention as a key component in embedded crime prevention”. Canadian Journal of Criminology and Criminal Justice: 271-292. doi.org/10.3138/cjccj.47.2.271
Buitrago, Julián Ricardo, Jair David Rodríguez y Pedro Aleksander Bernal. 2015. “Registros administrativos de policía para la consolidación de cifras de criminalidad en Colombia”. Revista Criminalidad 57 (2): 11-22.
Cornish, Dereck, y Ronald Clarke. 2003. “Opportunities, precipitators and criminal decisions: a reply to Wortley's critique of situational crime prevention”. Crime Prevention Studies 16: 41-96.
Gélvez, Juan David. 2018. “¿Cuáles determinantes se relacionan con la percepción de inseguridad? Un análisis estadístico y espacial para la ciudad de Bogotá, D. C.”. Revista Criminalidad 61 (1): 69-84.
Gómez, Santiago, Daniel Mejía y Santiago Tobón. 2019. “The Deterrent Effect of Surveillance Cameras on Crime”. Documentos CEDE.
Hollywood, Jhon, Kenneth McKay, Dulani Woods y Denis Agniel. 2019. “Real-Time Crime Centers in Chicago: Evaluation of the Chicago Police Department's Strategic Decision Support Centers”, doi.org/10.7249/rr3242
Instituto de Estudios Urbanos-Universidad Nacional de Colombia. 2016. “Las ciudades intermedias como resultado del proceso de urbanización”, https://bit.ly/3BCXx83
Johnson, Shane D., Rob T. Guerette y Kate Bowers. 2014. “Crime displacement: What we know, what we don't know, and what it means for crime reduction”. Journal of Experimental Criminology 10 (4): 549-571. doi.org/10.1007/s11292-014-9209-4
Kang, Hyeon-Woo, y Hang-Bong Kang. 2017. “Prediction of crime occurrence from multi-modal data using deep learning”. PLoS ONE 12 (4): e0176244. doi.org/10.1371/journal.pone.0176244
Karppi, Tero. 2018. “The Computer Said So: On the Ethics, Effectiveness, and Cultural Techniques of Predictive Policing”. Social Media + Society 4 (2): 205630511876829. doi.org/10.1177/2056305118768296
Levine, E. S., Jessica Tisch, Anthony Tasso, y Michael Joy. 2017. “The New York City police department’s domain awareness system”. Interfaces 47 (1): 70-84. doi.org/10.1287/inte.2016.0860
Meijer, Albert, y Martijn Wessels. 2019. “Predictive Policing: Review of Benefits and Drawbacks”. International Journal of Public Administration 42 (12): 1031-1039. doi.org/10.1080/01900692.2019.1575664
Mejía, Daniel, Ervyn Norza, Santiago Tobón y Martín Vanegas-Arias. 2021. “Broken Windows Policing and Crime: Evidence from 80 Colombian Cities”, doi.org/10.2139/ssrn.3917187
Mohler, George-, Martin Short, Jeffrey Brantingham, Frederic Paik Schoenberg y George Tita. 2011. “Self-Exciting Point Process Modeling of Crime”. Journal of the American Statistical Association 106 (493): 100-108, doi.org/10.1198/jasa.2011.ap09546
Mohler, George, M.B. Short, Sean Malinowski, Mark Johnson, George Tita, Andrea Bertozzi y P. Jeffrey Brantingham. 2015. “Randomized Controlled Field Trials of Predictive Policing”. Journal Of the American Statistical Association 110 (512): 1399-1411. doi.org/10.1080/01621459.2015.1077710
Organización Mundial de Ciudades y Gobiernos Locales Unidos. s.f. “Ciudades intermedias- Nexo vital entre lo local y lo global”, https://bit.ly/3d2CEJi
Ridgeway, Greg. 2018. “Policing in the Era of Big Data”. Annual Review of Criminology 1 (1): 401-419. doi.org/10.1146/annurev-criminol-062217-114209
Riascos, Álvaro, Mateo Dulce, Juan Sebastián Moreno y Francisco Gómez. 2020. “Prediciendo el crimen en Bogotá”. Nota de Política CEDE 38. Universidad de los Andes.
Santos, Rachel. 2014. “The effectiveness of crime analysis for crime reduction: Cure or diagnosis?”. Journal of Contemporary Criminal Justice 30 (2): 147-168. doi.org/10.1177/1043986214525080
Saunders, Jessica, Priscillia Hunt, y John S. Hollywood. 2016. “Predictions put into practice: A quasi-experimental evaluation of Chicago’s predictive policing pilot”. Journal of Experimental Criminology 12 (3): 347-371. doi.org/10.1007/s11292-016-9272-0
Shuman, David, Sunil K. Narang, Pascal Frossard, Antonio Ortega, y PierreVandergheynst. 2013. “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains”. IEEE Signal Processing Magazine 30 (3): 83-98. doi.org/10.1109/msp.2012.2235192
SEN (Sistema Estadístico Nacional). 2021. “Resultados de evaluación de la calidad estadística y trabajo conjunto para la encuesta de convivencia y seguridad ciudadana”, https://bit.ly/3JtYKAq
Stanković, Ljubisa, y Ervin Sejdić. 2019. Vertex-Frequency Analysis of Graph Signals. Signals And Communication Technology.
Wang, Bao, Penghang Yin, Andrea Bertozzi, Jeffrey Brantingham, Stanley Osher, y Jack Xin. 2017. “Deep Learning for Real-Time Crime Forecasting and Its Ternarization”. Chinese Annals of Mathematics. doi.org/10.1007/s11401-019-0168-y
Wang, Bao, Xiyang Luo, Fangbo Zhang, Baichuan Yuan, Andrea Bertozzi, y Jeffrey Brantingham. 2018. “Graph-Based Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data”. Cornell University. doi.org/10.48550/arXiv.1804.00684
Weisburd, David, y Cody Telep. 2014. “Hot Spots Policing”. Journal Of Contemporary Criminal Justice 30 (2): 200-220. doi.org/10.1177/1043986214525083
Wright, Jhon, y Kevin Beaver. 2012. Parenting and Crime. En The Oxford Handbook of Criminological Theory, editado por Francis T. Cullen y Pamela Wilcox, 40-68. Oxford University Press.